If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=23
We move all terms to the left:
d^2-(23)=0
a = 1; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·1·(-23)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{23}}{2*1}=\frac{0-2\sqrt{23}}{2} =-\frac{2\sqrt{23}}{2} =-\sqrt{23} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{23}}{2*1}=\frac{0+2\sqrt{23}}{2} =\frac{2\sqrt{23}}{2} =\sqrt{23} $
| 2a-3/a-1=2a+3/a+3+20a2-1 | | d^2=34 | | 2760=7x^2 | | 5x+9=2x+2 | | -3-18=-6x | | 3a-17=58 | | 5g+2(-3+2g))=1-g | | 2(x+3)-2=3x | | -11x=37 | | 6(y-7)=30 | | 1.59+10x=7.39 | | Y^+10y-12=0 | | p^2+12p-14=0 | | 10y^+7y=12 | | -6y^2=-4y-10 | | 3(2x+5)=4(5-x) | | 135x+365=175x+250 | | 10/x=7/24.50 | | (2.718)(0.06)^x=2 | | 15y-15y=1 | | 4(x+2)(x-3)=0 | | 4x=6+2(4x-1) | | Y=3x2-4x | | 7(f(5))=3(5)+4 | | 8+7v=9v | | 6x-19=3x-32 | | 21+t=4 | | -38=4y+3(y-8) | | 15x-30=-5x | | 5(3b+6)=12 | | 6n+21=32-n | | X+75+x-9=180 |